Abstract

Polyploidization events are observed across the tree of life and occur in many fungi, plant, and animal species. During evolution, polyploidy is thought to be an important source of speciation and tumorigenesis. However, the origin of polyploid populations is not always clear, and little is known about the precise nature and structure of their complex genome. Using a long-read sequencing strategy, we sequenced 71 strains from the Brettanomyces bruxellensis yeast species, which is found in anthropized environments (e.g., beer, contaminant of wine, kombucha, and ethanol production) and characterized by several polyploid subpopulations. To reconstruct the polyploid genomes, we phased them by using different strategies and found that each subpopulation had a unique polyploidization history with distinct trajectories. The polyploid genomes contain either genetically closely related (with a genetic divergence <1%) or diverged copies (>3%), indicating auto- as well as allopolyploidization events. These latest events have occurred independently with a specific and unique donor in each of the polyploid subpopulations and exclude the known Brettanomyces sister species as possible donors. Finally, loss of heterozygosity events has shaped the structure of these polyploid genomes and underline their dynamics. Overall, our study highlights the multiplicity of the trajectories leading to polyploid genomes within the same species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.