Abstract

The thalamic reticular nucleus is a layer of GABAergic neurons that occupy a strategic position between the thalamus and cortex. Here we used laser scanning photostimulation to compare in young mice (9-12 days old) the organization of the reticular inputs to first- and higher-order somatosensory relays, namely, the ventral posterior lateral nucleus and posterior nucleus, respectively. The reticulothalamic input footprints to the ventral posterior lateral nucleus neurons consisted of small, single, topographically organized elliptical regions in a tier away from the reticulothalamic border. In contrast, those to the posterior nucleus were complicated and varied considerably among neurons: although almost all contained a single elliptical region near the reticulothalamic border, in most cases, they consisted of additional discontinuous regions or relatively diffuse regions throughout the thickness of the thalamic reticular nucleus. Our results suggest two sources of reticular inputs to the posterior nucleus neurons: one that is relatively topographic from regions near the reticulothalamic border and one that is relatively diffuse and convergent from most or all of the thickness of the thalamic reticular nucleus. We propose that the more topographic reticular input is the basis of local inhibition seen in posterior nucleus neurons and that the more diffuse and convergent input may represent circuitry through which the ventral posterior lateral and posterior nuclei interact.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call