Abstract

Perceptual coherence in the face of discrepant multisensory signals is achieved via the processes of multisensory integration, recalibration and sometimes motor adaptation. These supposedly operate on different time scales, with integration reducing immediate sensory discrepancies and recalibration and motor adaptation reflecting the cumulative influence of their recent history. Importantly, whether discrepant signals are bound during perception is guided by the brains' inference of whether they originate from a common cause. When combined, these two notions lead to the hypothesis that the time scales on which integration and recalibration (or motor adaptation) operate are associated with different time scales of evidence about a common cause underlying two signals. We tested this prediction in a well-established visuo-motor paradigm, in which human participants performed visually guided hand movements. The kinematic correlation between hand and cursor movements indicates their common origin, which allowed us to manipulate the common-cause evidence by titrating this correlation. Specifically, we dissociated hand and cursor signals during individual movements while preserving their correlation across the series of movement endpoints. Following our hypothesis, this manipulation reduced integration compared with a condition in which visual and proprioceptive signals were perfectly correlated. In contrast, recalibration and motor adaption were not affected by this manipulation. This supports the notion that multisensory integration and recalibration deal with sensory discrepancies on different time scales guided by common-cause evidence: Integration is prompted by local common-cause evidence and reduces immediate discrepancies, whereas recalibration and motor adaptation are prompted by global common-cause evidence and reduce persistent discrepancies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.