Abstract

Volatile compounds (VCs) in grapevine berries play an important role in wine quality; however, such compounds and vine development can be sensitive to environmental conditions. Due to this sensitivity, changes in temperature patterns due to global warming are likely to further impact grape production and berry composition. The aim of this study was to determine the possible effects of different growing-degree day accumulation patterns on berry ripening and composition at harvest. An experimental field was conducted using Vitis sp. L'Acadie blanc, in Nova Scotia, Canada. Using on-the-row mini-greenhouses, moderate temperature increase and reduced ultraviolet (UV) exposure were triggered in grapevines during pre-veraison (inflorescence to the beginning of berry softening), post-veraison (berry softening to full maturity), and whole season (inflorescence to full maturity), while controls were left without treatment. Free and bound VCs were extracted from berries sampled at three different phenological stages between veraison and maturity before analysis by gas chromatography–mass spectrometry (GC-MS). Berries from grapevines exposed to higher temperatures during early berry development (pre-veraison and whole) accumulated significantly higher concentrations of benzene derivatives 2-phenylethanol and benzyl alcohol at harvest, but lower concentrations of hydroxy-methoxy-substituted volatile phenols, terpenes, and C13-norisoprenoids than the control berries. These results illustrate the importance of different environmental interactions in berry composition and suggest that temperature could potentially modulate phenylpropanoid and mevalonate metabolism in developing berries. This study provides insights into the relationships between abiotic conditions and secondary metabolism in grapevine and highlights the significance of early developmental stages on berry quality at harvest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.