Abstract
The predicted contributions of flavin-containing monooxygenase 3 (FMO3) to drug candidate N-oxygenations can be estimated using classic base dissociation constants of the N-containing moiety. In this study, metabolic clearance values in human liver microsomes were experimentally determined for available model drugs. Typical metabolic clearance values (34–96 μL/min/mg protein) at pH 8.4 of trimethylamine, benzydamine, and itopride were two-to fourfold higher than those at pH 7.4. In contrast, the metabolic clearance of control drug midazolam at pH 8.4 was half that at pH 7.4. The ratios of clearance values at pH 8.4 to those at pH 7.4 and the substrate pKa (base) values of reported metabolic N-oxygenation sites of trimethylamine, benzydamine, clomipramine, chlorpromazine, tamoxifen, itopride, loxapine, xanomeline, tozasertib, dasatinib, and clozapine were significantly correlated (r = 0.60, p < 0.05, n = 11). These results suggested that the simple comparison of metabolic clearance values at pH 8.4 and at pH 7.4 could be useful for predicting the contributions of FMO3 to the N-oxygenations of new drug candidates. This method, along with in silico pKa (base) values > 8.4, could prove useful for predicting the contributions of FMO3 to N-oxygenations as part of drug development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.