Abstract
In this work, multivariate calibration models and TLC-densitometric methods have been developed and validated for quantitative determination of olmesartan medoxomil (OLM) and hydrochlorothiazide (HCZ) in presence of their degradation products, olmesartan (OL) and salamide (SAL), respectively. In the first method, multivariate calibration models including principal component regression (PCR) and partial least square (PLS) were applied. The wavelength range 210-343 nm was used and data was auto-scaled and mean centered as pre-processing steps for PCR and PLS models, respectively. These models were tested by application to external validation set with mean percentage recoveries 99.78, 100.01, 100.41 and 100.46% for OLM, HCZ, OL and SAL, respectively, for PLS model and also, 100.22, 100.40, 102.25 and 100.13% for them, respectively, for PCR model. The second method is TLC-densitometry at which the chromatographic separation was carried out using silica gel 60F254 TLC plates and the developing system consisted of a mixture of ethyl acetate:chloroform:methanol: formic acid:tri-ethylamine (60:40:4:4:1, by volume) with UV-scanning at 254 nm. The developed methods were successfully applied for determination of OLM and HCZ in their pharmaceutical dosage form. Also, statistical comparison was made between the developed methods and the reported method using student’s-t test and F-test and results showed that there was no significant difference between them concerning both accuracy and precision.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.