Abstract
Photoconductivity (PC) spectroscopy and photoluminescence (PL) spectroscopy were used to characterize two heterostructure configurations of InAlAs/InP grown by molecular beam epitaxy (MBE) on the InP (100) substrate. The sample A is the type called normal heterostructure, which has an In<sub>0.52</sub>Al<sub>0.48</sub>As layer grown on InP, while sample B is called the inverse type formed by an InP cap layer on In<sub>0.52</sub>Al<sub>0.48</sub>As. The front excitation was employed in both PC experiment and PL experiment and the measurements were conducted at 77 K. The PC spectrum of sample A shows an abnormal step-like drop when the photon energy is larger than the energy band gap of In<sub>0.52</sub>Al<sub>0.48</sub>As. The phenomenon implies that the conductance of sample is a multilayer effect including the contribution of interfacial two-dimensional electron gas (2DEG). Moreover, a conductance peak is observed at 916 nm below the bandgap of InP. Accordingly, an intense luminescent peak at the wavelength manifests in the PL spectrum. The origin of the 916 nm peak is attributed to the recombination of 2DEG electrons with the valence band holes excited near the interface. However, the spectral feature of the above energy does not exist in both PC and PL spectra of sample B. This difference may be explained by the different interface electronic structures of the inverse interface. For the latter case, considering that a graded variation in In-As-P composition is related to the inverse interface of InP/InAlAs, the band bending effect should be weak. In such a case, the bound energy of 2DEG in the interface potential well is raised closer to the conductance band of the bulk. Consequently, the recombination energy of 2DEG at the inverse interface with the holes in the valence band is close to the band-to-band transition of InP bulk and the luminescence is difficult to be distinguished from that of bulk InP. The work also demonstrates that the comparative study with both PC technique and PL technique is helpful to provide a full insight into the interface electronic property.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.