Abstract

Heat shock protein, e.g. HSP70, can be induced in human skeletal muscle undergoing exercise training, and plays important role in adaptation to stress. This study was designed to investigate the effects of high-intensity strength training and low-intensity endurance training on the HSP70 response to exercise, bearing in mind whether HSP70 is induced in the well-trained muscle during low-intensity endurance training. Six well-trained rowers (male, aged 18 years) underwent a training program which consisted of 3 weeks high-intensity training (HIT) and 3 weeks low-intensity endurance training (ET), followed by 1 week of recovery each (R1 and R2, respectively). HSP70 (2.5 microg total protein loaded) was determined by Western blot with reference to a series of known amount of standard HSP70. HSP70 mRNA was analyzed by RT-PCR, and the relative percentage change was referred to the baseline level (before training). HSP70 increased significantly at the end of HIT (from 51 to 73 ng), decreased at the end of R1(66 ng), and remained unchanged throughout ET and R2. HSP70 mRNA increased significantly after HIT (257%) and decreased gradually afterwards (194%, 166%, and 119% for R1, ET, and R2, respectively). It can be concluded that: (1) HSP70 was induced by high-intensity training, but not by endurance training at low intensity, and (2) there was a discrepancy in terms of HSP70 regulation between the protein and mRNA levels, suggesting that posttranscriptional regulation may play a role in HSP70 expression in human skeletal muscle in response to exercise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call