Abstract

The concentrations of the dihydropyridines, CD-349, nicardipine, and nimodipine, producing 50% inhibition of Ca2+, calmodulin (CaM)-dependent cyclic nucleotide phosphodiesterase (CaPDE) from rabbit aorta in the absence of Ca2+-CaM complex were approximately 7 to 13-fold higher than these of aorta CaPDE in the presence of Ca2+-CaM complex and of the trypsin treated enzyme form. On the other hand, these dihydropyridine derivatives inhibited CaPDE from rabbit brain at much the same IC50 values seen in the absence and presence of the Ca2+-CaM complex and the trypsin-treated enzyme. Kinetic analysis revealed that these dihydropyridines inhibited the activities of CaPDEs from both the aorta and brain, competitively with cyclic GMP as substrate, and the Ki values of CD-349 for CaPDE from aorta or brain in the absence or presence of Ca2+-CaM complex and trypsin-treated enzyme were 9.6, 0.75, 0.75 or 0.69, 0.70, 0.66 microM, respectively. These results suggest that CaPDE from the rabbit aorta differs from this enzyme in the brain, with regard to the relationship between the dihydropyridine binding sites on CaPDE molecules and the domains regulated by the Ca2+-CaM complex or limited proteolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.