Abstract

In recent years, medical data have vastly increased due to the continuous generation of digital data. The different forms of medical data, such as reports, textual, numerical, monitoring, and laboratory data generate the so-called medical big data. This paper aims to find the best algorithm which predicts new medical data with high accuracy, since good prediction accuracy is essential in medical fields. To achieve the study’s goal, the best accuracy algorithm and least processing time algorithm are defined through an experiment and comparison of seven different algorithms, including Naïve bayes, linear model, regression, decision tree, random forest, gradient boosted tree, and J48. The conducted experiments have allowed the prediction of new medical big data that reach the algorithm with the best accuracy and processing time. Here, we find that the best accuracy classification algorithm is the random forest with accuracy values of 97.58%, 83.59%, and 90% for heart disease, M-health, and diabetes datasets, respectively. The Naïve bayes has the lowest processing time with values of 0.078, 7.683, and 22.374 s for heart disease, M-health, and diabetes datasets, respectively. In addition, the best result of the experiment is obtained by the combination of the CFS feature selection algorithm with the Random Forest classification algorithm. The results of applying RF with the combination of CFS on the heart disease dataset are as follows: Accuracy of 90%, precision of 83.3%, sensitivity of 100, and consuming time of 3 s. Moreover, the results of applying this combination on the M-health dataset are as follows: Accuracy of 83.59%, precision of 74.3%, sensitivity of 93.1, and consuming time of 13.481 s. Furthermore, the results on the diabetes dataset are as follows: Accuracy of 97.58%, precision of 86.39%, sensitivity of 97.14, and consuming time of 56.508 s.

Highlights

  • IntroductionThe rapid increase in digital data has enabled the generation of medical big data

  • Publisher’s Note: MDPI stays neutralThe rapid increase in digital data has enabled the generation of medical big data

  • The results showed that the proposed model with the random forest (RF) and SVM classification algorithms have the highest accuracy and are highly effective

Read more

Summary

Introduction

The rapid increase in digital data has enabled the generation of medical big data. Data analysis is an important tool, paving the way towards achieving accuracy of big medical data [1]. In particular, traditional data mining techniques are used to raise the accuracy and efficiency of medical data analysis. For example, consultants prepare reports regarding their patients in order to give an accurate and efficient decision on their patients’ health. This discovered information is available for consultants and patients to access in order to reach an accurate diagnosis [3,4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call