Abstract

Magnetic FeSx was developed as a high-performance sorbent for selectively adsorbing Hg2+ from waste acids in smelters. However, further improvement of its ability for Hg2+ adsorption was extremely restricted due to the lack of reaction mechanisms and structure-activity relationships. In this study, the roles of FeS and FeS2 on magnetic FeSx for Hg2+ adsorption were investigated with alternate adsorption of Hg2+ without/with Cl−. The structure-activity relationship of magnetic FeSx for Hg2+ adsorption and the negative effect of acid erosion were elucidated using kinetic analysis. FeS can react with Hg2+ with 1:1 stoichiometric ratio to form HgS, while FeS2 can react with Hg2+ in the presence of Cl− with novel 1:3 stoichiometric ratio to form Hg3S2Cl2. The rate of magnetic FeSx for Hg2+ adsorption was related to the instantaneous amounts of FeS and threefold FeS2 on magnetic FeSx and the amount of Hg2+ adsorbed. Meanwhile, its capacity for Hg2+ adsorption was related to the initial sum of FeS amount and threefold FeS2 amount on the surface and their ratios by acid erosion. Then, magnetic FeSx-400 was devised with adsorption rate of 2.12 mg g−1 min−1 and capacity of 1092 mg g−1 to recover Hg2+ from waste acids for centralized control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call