Abstract
The effect of elevated light treatment (25 degrees C, PPFD 360 mumol m-2 sec-1) or chilling temperatures combined with elevated light (5 degrees C, PPFD 360 mumol m-2 sec-1) on the activity of six antioxidant enzymes, guaiacol peroxidases, and glutathione peroxidase (GPx, EC 1.11.1.9) protein accumulation were studied in tobacco Nicotiana tabacum cv. Petit Havana SR1. Both treatments caused no photooxidative damage, but chilling caused a transient wilting. The light treatment increased the activities of ascorbate peroxidase (APx, EC 1.11.1.11) and guaiacol peroxidases while catalase (EC 1.11.1.6), superoxide dismutase (SOD, EC 1.15.1.1), monodehydroascorbate reductase (MDHAR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2) were unchanged. In contrast, chilling treatment did not increase any of the antioxidant enzyme activities, but decreased catalase and to a lesser extent DHAR activities. Glutathione peroxidase protein levels increased sporadically under light treatment and constantly under chilling. Both chilling and light stress caused induction of glutathione synthesis and accumulation of oxidised glutathione, although the predominant part of the glutathione pool remained in the reduced form. Antioxidant enzymes from the chilling treated plants were measured at both 25 degrees C and 5 degrees C. Measurements at 5 degrees C revealed a 3-fold reduction in catalase activity, compared with that measured at 25 degrees C, indicating that the overall reduction in catalase after four days of chilling was approximately 10-fold. The overall reduction in activity for the other antioxidant enzymes after four days of chilling was 2-fold for GR and APx, 1.5-fold for MDHAR, 3.5-fold for DHAR. The activity of SOD was the same at 25 and 5 degrees C. These results indicate that catalase and DHAR are most strongly affected by the chilling treatment and may be the rate-limiting factor of the antioxidant system at low temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.