Abstract
The knowledge regarding the effects of metal or metal oxide nanoparticles on soil microbial metabolic activity and key ecological functions is limited, relative to the information about their species diversity. For this reason, the responses of soil microbial metabolic activity to silver (AgNPs) and iron oxide (FeONPs) nanoparticles, along concentration gradients of each, were evaluated by microcalorimetry and soil nitrification potential. The changes in abundances of bacteria, eukaryotes and ammonia-oxidizing bacteria were measured by real time quantitative PCR. It was found that AgNP (at 0.1, 1 and 10 mg kg(-1) soil) amendments decreased soil microbial metabolic activity, nitrification potential and the abundances of bacteria and ammonia-oxidizing bacteria; on the contrary, FeONPs had the positive effects on soil microbial metabolic activity (at 1 and 10 mg kg(-1) soil) and soil nitrification potential (at 0.1 and 1 mg kg(-1) soil). Specific microbial metabolic activity and specific nitrification potential further revealed that metal or metal oxide nanoparticles could change the C and N cycles of the agricultural soil through influencing soil microbial metabolism. These findings could deepen the understanding of the influence of NPs on soil microorganisms and their driven soil ecology process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.