Abstract

AimsActual resuscitation guidelines recommend 10 respirations per minute (rpm) for advanced pediatric life support. This respiratory rate (RR) is much lower than what is physiological for children. The aim of this study is to compare changes in ventilation, oxygenation, haemodynamics and return of spontaneous circulation (ROSC) rates with three RR.MethodsAn experimental model of asphyxial cardiac arrest (CA) in 46 piglets (around 9.5 kg) was performed. Resuscitation with three different RR (10, 20 and 30 rpm) was carried out. Haemodynamics and gasometrical data were obtained at 3, 9, 18 and 24 minutes after beginning of resuscitation. Measurements were compared between the three groups.ResultsNo statistical differences were found in ROSC rate between the three RR (37.5%, 46.6% and 60% in the 10, 20 and 30 rpm group respectively P = 0.51). 20 and 30 rpm groups had lower PaCO2 values than 10 rpm group at 3 minutes (58 and 55 mmHg vs 75 mmHg P = 0.08). 30 rpm group had higher PaO2 (61 mmHg) at 3 minutes than 20 and 10 rpm groups (53 and 45 mmHg P = 0.05). No significant differences were found in haemodynamics or tissue perfusion between hyperventilated (PaCO2 <30 mmHg), normoventilated (30–50 mmHg) and hypoventilated (>50 mmHg) animals. PaO2 was significantly higher in hyperventilated (PaO2 153 mmHg) than in normoventilated (79 mmHg) and hypoventilated (47 mmHg) piglets (P<0.001).ConclusionsOur study confirms the hypothesis that higher RR achieves better oxygenation and ventilation without affecting haemodynamics. A higher RR is associated but not significantly with better ROSC rates.

Highlights

  • Actual resuscitation guidelines are based on international consensus [1,2]

  • No statistical differences were found in return of spontaneous circulation (ROSC) rate between the three respiratory rate (RR) (37.5%, 46.6% and 60% in the 10, 20 and 30 rpm group respectively P = 0.51). 20 and 30 rpm groups had lower PaCO2 values than 10 rpm group at 3 minutes (58 and 55 mmHg vs 75 mmHg P = 0.08). 30 rpm group had higher PaO2 (61 mmHg) at 3 minutes than 20 and 10 rpm groups (53 and 45 mmHg P = 0.05)

  • No significant differences were found in haemodynamics or tissue perfusion between hyperventilated (PaCO2 50 mmHg) animals

Read more

Summary

Introduction

Actual resuscitation guidelines are based on international consensus [1,2]. In the last few years, chest compressions have gained greater relevance than breaths during CPR [3], even to the point of recommending chest compressions only for bystander adult basic life support [4]. Cardiac arrest in children and young adults is usually the end result of an initial respiratory arrest (secondary to respiratory or neurological conditions), whereas the main cause of cardiac arrest in adults is cardiogenic due to arrhythmias [2,8,9,10,11,12,13,14]. This is why ventilation during CPR is more important in children than in adults [5,6,7,15]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.