Abstract

Adenosine is an inhibitory modulator of brain activity with neuroprotective and anticonvulsant properties. To investigate the distribution of bioelectric activities under application of adenosine, rat hippocampal and neocortical slices were incubated with the voltage-sensitive dye RH795 and neuronal activity was monitored using a fast-imaging photodiode array combined with standard field potential recordings. The effects of adenosine (1–50 μmol/l) on the spatial distribution of stimulus-induced activities were studied in non-epileptiform as well as epileptiform conditions. Epileptiform activity was induced by omission of Mg2+ from the bath medium. The adenosine’s inhibitory effects on the amplitude and spatial extent of stimulus-induced bioelectric activity in the hippocampus were most prominent in strata radiatum and pyramidale in both control and epileptic mediums. Adenosine’s inhibitory actions were different on various layers of neocortical tissues in non-epileptiform and epileptiform conditions. Layers II and III showed the most inhibition by application of adenosine in control slices. In epileptiform medium, however, adenosine exerts significant suppressive effects only in layer I of neocortical slices. The data demonstrate a region-specific modulatory potential of adenosine on neuronal network excitability in the hippocampus and neocortex. This may be important in local adenosine therapy in epilepsy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call