Abstract

Polyoxometalates (POMs), which possess strong acidity and chemical stability, are promising solid proton conductors and potential candidates for proton exchange membrane fuel cell applications. To investigate how factors such as proton concentration and carrier affect the overall proton conduction, we have synthesized new compounds HImMo132 (Im, imidazole), HMeImMo132, ILMo132, and TBAMo132 with hollow structures and HImPMo12 with a solid spherelike structure. These crystal models were prepared by encapsulating POM with organic molecules with different proton contents. Among them, the single-crystal sample of the hollow structure HImMo132 containing more proton sources shows a high proton conductivity of 4.98 × 10-2 S cm-1, which was approximately 1 order of magnitude greater than that of the solid cluster HImPMo12 with the same proton sources and 3 orders of magnitude greater than that of the proton-free organic cation-encapsulated giant ball TBAMo132. This study provides a theoretical guidance toward designing and developing new-generation proton conductors and studying their performances at the molecular level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.