Abstract

ObjectivesThe genetic diversity of Mycobacterium tuberculosis complex (MTBC) influences the immune response of the host, which may affect the immunodiagnostic tests and biomarker assessment studies used for tuberculosis (TB). This study aimed to determine whether the mycobacterial-antigen-stimulated cytokine responses vary with the genotype of the MTBC infecting the patient. MethodsEighty-one patients with confirmed active pulmonary TB were recruited, and MTBC clinical strains were isolated from their sputum for bacterial lineage single-nucleotide polymorphism typing. Whole blood was drawn from the patients to measure the purified protein derivative (PPD)-stimulated cytokine responses (GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, TNF-α, IFN-α, IL-12, eotaxin, IL-13, IL-15, IL-17, MIP1-α, MIP1-β, MCP1, IL1RA, IP10, IL2R, MIG) with the Luminex multiplex immunoassay. ResultsOf the 24 cytokines studied, three were produced differentially in whole blood dependent on the infecting lineage of MTBC. Decreased production of IL-17 was observed in patients infected with modern lineages compared with patients infected with ancestral lineages (P < 0.01), and production of IFN-γ and IL-2 was significantly decreased in patients infected with lineage 4 strains compared with patients infected with lineage 3 strains (P < 0.05). ConclusionMTBC strains belonging to lineage 4 induced a decreased whole-blood PPD-stimulated pro-inflammatory cytokine response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.