Abstract

Abstract. Reactions at air-ice interfaces can proceed at very different rates than those in aqueous solution, due to the unique disordered region at the ice surface known as the quasi-liquid layer (QLL) . The physical and chemical nature of the surfacial region of ice is greatly affected by solutes such as sodium halide salts. In this work, we studied the effects of sodium chloride and sodium bromide on the photolysis kinetics of harmine, an aromatic organic compound, in aqueous solution and at the surface of frozen salt solutions above the eutectic temperature. In common with other aromatic organic compounds we have studied, harmine photolysis is much faster on ice surfaces than in aqueous solution, but the presence of NaCl or NaBr – which does not affect photolysis kinetics in solution – reduces the photolysis rate on ice. The rate decreases monotonically with increasing salt concentration; at the concentrations found in seawater, harmine photolysis at the surface of frozen salt solutions proceeds at the same rate as in aqueous solution. These results suggest that the brine excluded to the surfaces of frozen salt solutions is a true aqueous solution, and so it may be possible to use aqueous-phase kinetics to predict photolysis rates at sea ice surfaces. This is in marked contrast to the result at the surface of frozen freshwater samples, where reaction kinetics are often not well-described by aqueous-phase processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.