Abstract
Rice seedlings treated with the synthetic compound benzo(1,2,3)thiadiazole-7-carbothioic acid S-methyl ester (BTH) acquired resistance to subsequent attack by the rice blast fungus Magnaporthe grisea (Hebert) Barr. BTH (trade name Bion™) has been released to the market as a plant protecting agent for rice. Here, we analysed the pattern of expressed genes in rice plants treated with BTH, and compared this pattern with those induced by the formerly discovered resistance inducer 2,6-dichloroisonicotinic acid (INA) and by Pseudomonas syringae pv. syringae, a non-host pathogen inducing a hypersensitive response. Both INA and BTH induced similar patterns of genes, suggesting that these compounds are functional analogues. In contrast, the patterns induced by the chemical inducers and by P. syringae were clearly dissimilar.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.