Abstract

The efficiency of organic light-emitting diodes (OLEDs) is especially limited by their low light outcoupling efficiency. An approach for its enhancement is the use of horizontally oriented emitter molecules with respect to the substrate. In this study we quantitatively determine the orientation of the optical transition dipole moments in doped films of two similar phosphorescent Pt(II) complexes having a linear molecular structure. These emitters are employed in OLED devices and their efficiency is analyzed by optical simulations. For an OLED with slightly more horizontally oriented emitter molecules an external quantum efficiency (ηEQE) of 15.8% at low current-density is realized, indicating a relative improvement of outcoupling efficiency of 5.3% compared to the isotropic case. However, a very similar complex adopting isotropic molecular orientation yields ηEQE of only 11.5% implying an imperfect charge carrier balance in the OLED device and a shift of the recombination zone. Furthermore, we highlight the enormous potential of horizontal molecular orientation of emitting molecules in OLEDs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.