Abstract

Translation elongation factor 1A (eEF1A) directs aminoacyl-tRNA to the A site of 80S ribosomes. In addition, more than 97% homologous variants of eEF1A, A1 and A2, whose expression in different tissues is mutually exclusive, may fulfill a number of independent moonlighting functions in the cell; for instance, the unusual appearance of A2 in an A1-expressing tissue was recently linked to the induction of carcinogenesis. The structural background explaining the different functional performance of the highly homologous proteins is unclear. Here, the main difference in the structural properties of these proteins was revealed to be the improved ability of A1 to self-associate, as demonstrated by synchrotron small-angle X-ray scattering (SAXS) and analytical ultracentrifugation. Besides, the SAXS measurements at different urea concentrations revealed the low resistance of the A1 protein to urea. Titration of the proteins by hydrophobic dye 8-anilino-1-naphthalenesulfonate showed that the A1 isoform is more hydrophobic than A2. As the different association properties, lipophilicity, and stability of the highly similar eEF1A variants did not influence considerably their translation functions, at least in vitro, we suggest this difference may indicate a structural background for isoform-specific moonlighting roles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.