Abstract

Ammonia-oxidizing microorganisms (AOM) play crucial roles in the degradation of ammonia nitrogen in freshwater lakes. Hence, it is necessary to reveal the spatiotemporal dynamic changes of AOM in freshwater lakes. Here, we conducted a study on the spatial and temporal dynamic changes of AOM in different lake regions under gradient nutrient levels in Lake Taihu, and found that the abundance of AOM had significant spatial changes, while the seasonal changes had relatively little effect on the abundance of AOM. We also found that ammonia-oxidizing archaea (AOA) were adapted to freshwater habitats with low nutrient levels, while ammonia-oxidizing bacteria (AOB) and anaerobic ammonia-oxidizing bacteria (AAOB) had higher abundance in high nutrient level lake regions. Moreover, the amoA gene abundance of AOB was much higher than that of AOA, indicating that AOB was the dominant aerobic ammonia oxidizer in the water of Lake Taihu. In addition, temperature, pH and dissolved oxygen all had a positive effect on AOM, especially AOB; while C- and N-related physicochemical factors had a significant positive effect on AAOB, but exhibited a significant negative correlation with AOA. The community structure of AOM also had obvious spatial changes and Group I.1a, Nitrosomonas and Candidatus Brocadia fulgida were the dominant cluster of AOA, AOB and AAOB, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call