Abstract

The growing interest of the winemaking industry on the use of non-Saccharomyces starters has prompted several studies about the physiological features of this diverse group of microorganisms. The fact that the proposed use of these new starters will almost invariably involve either simultaneous or sequential inoculation with Saccharomyces cerevisiae has also driven the attention to the potential biological interactions between different starters during wine fermentation. Our current understanding is that alternative yeast starters will affect wine features by both direct and indirect mechanisms (through metabolic or other types of interactions with S. cerevisiae). There are still few studies addressing the question of yeast–yeast interactions in winemaking by a transcriptomic approach. In a previous report, we revealed early responses of S. cerevisiae and Torulaspora delbrueckii to the presence of each other under anaerobic conditions, mainly the overexpression of genes related with sugar consumption and cell proliferation. We have now studied the response, under aerobic conditions, of S. cerevisiae to other two non-Saccharomyces species, Hanseniaspora uvarum and Candida sake, keeping T. delbrueckii as a reference; and always focusing on the early stages of the interaction. Results point to some common features of the way S. cerevisiae modifies its transcriptome in front of other yeast species, namely activation of glucose and nitrogen metabolism, being the later specific for aerobic conditions.

Highlights

  • Employment of non-Saccharomyces yeast starters constitutes a growing trend in the winemaking industry

  • In terms of microbial interactions, there is a substantial difference between conventional inoculated wine production, in which Saccharomyces cerevisiae dominates from almost the beginning of fermentation; and the use of non-Saccharomyces starters, which results in two different species represented by comparable cell numbers for a relatively long period

  • Some recently described examples include a synergic interaction between S. cerevisiae and T. delbrueckii resulting in increased levels of 3-sulfanylhexan1-ol (Renault et al, 2015, 2016) or in a decrease of volatile acidity and higher isoamyl acetate production (Taillandier et al, 2014); synergic interactions between Debaryomyces vanrijiae or Candida sake and S. cerevisiae resulting in enhanced aroma profile (Maturano et al, 2015)

Read more

Summary

Introduction

Employment of non-Saccharomyces yeast starters constitutes a growing trend in the winemaking industry. They are proposed as a means to improve aromatic complexity, so recovering some of the features of spontaneous fermentation, while minimizing the risk of microbial spoilage associated to it (Ciani and Comitini, 2011). In addition to its contribution to improved aromatic profile, non-Saccharomyces strains have been proposed to improve glycerol or mannoprotein content, volatile acidity, color stability, or alcohol level reduction (Ciani and Comitini, 2011; Morales et al, 2015; Ciani et al, 2016). The contribution of the inoculation of non-Saccharomyces strains to winemaking can be either direct or indirect, through biological interactions with S. cerevisiae. Some recently described examples include a synergic interaction between S. cerevisiae and T. delbrueckii resulting in increased levels of 3-sulfanylhexan1-ol (Renault et al, 2015, 2016) or in a decrease of volatile acidity and higher isoamyl acetate production (Taillandier et al, 2014); synergic interactions between Debaryomyces vanrijiae or Candida sake and S. cerevisiae resulting in enhanced aroma profile (Maturano et al, 2015)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.