Abstract

Two mangostin compounds, gamma-mangostin and alpha-mangostin, show anticancer properties through the inhibition of cell proliferation and cell migration. Metastatic triple-negative breast cancer (TNBC) cells, including MDA-MB-231, highly express C-X-C chemokine receptor type 4 (CXCR4) to maintain reactive oxygen species (ROS) and cell migration. This study was performed to analyze and compare different modes of action of γ-mangostin and α-mangostin as antimigratory effects targeted on CXCR4 in MDA-MB-231 as a model of TNBC cell. This study investigated the effect of γ-mangostin and α-mangostin using a series of assays, including Cell Counting Kit-8 (CCK-8) assay for cytotoxicity, wound healing assay for migration study, quantitative real-time polymerase chain reaction (qRT-PCR) for gene expression analysis, and flow cytometry for ROS measurement, along with in silico study to observe the binding between the compound and CXCR4. The findings revealed half maximal inhibitory concentration (IC50) values of 25 and 20 μM for γ-mangostin and α-mangostin in MDA-MB 231 cells, respectively. Moreover, a concentration of 10 μM was used for the migration assay. Both γ-mangostin and α-mangostin significantly suppressed cell migration within 24 hours. The present gene expression studies revealed the downregulation of key migration-associated genes, namely Farp, CXCR4, and LPHN2, upon γ-mangostin treatment but not α-mangostin. Additionally, both γ-mangostin and α-mangostin increased cellular ROS generation, highlighting the same effect of γ-mangostin and α-mangostin ROS elevation to inhibit cancer cell migration. Molecular docking simulations further suggested a potential interaction between γ-mangostin and α-mangostin with CXCR4 in high affinity. These findings suggest that both γ-mangostin and α-mangostin inhibit breast cancer cell migration and induce cellular ROS levels in MDA-MB-231 cells; notably, γ-mangostin suppresses CXCR4 mRNA expression that might correlate to its activity to inhibit MDA-MB-231 cell migration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call