Abstract

β-NaYF4 microcrystals with a variety of morphologies, such as microrod, hexagonal microprism, and octadecahedron, have been synthesized via a facile hydrothermal route. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra were used to characterize the samples. The intrinsic structural feature of β-NaYF4 seeds and two important external factors, namely, the pH values in the initial reaction solution and fluoride sources, are responsible for shape determination of β-NaYF4 microcrystals. It is found that the organic additive trisodium citrate (Cit3-) as a shape modifier has the dynamic effect by adjusting the growth rate of different facets under different experimental conditions, resulting in the formation of the anisotropic geometries of various β-NaYF4 microcrystals. The possible formation mechanisms for products with various architectures have been presented. A systematic study on the photoluminescence of Tb3+-doped β-NaYF4 samples with rod, prism, and octadecahedral shapes has shown that the optical properties of these phosphors are strongly dependent on their morphologies and sizes. This synthetic methodology appears to be general and promises to provide a gateway into other rare earth fluoride compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.