Abstract

Competitive and naturally occurring yeast killer phenotype is governed by coinfection with dsRNA viruses. Long-term relationship between the host cell and viruses appear to be beneficial and co-adaptive; however, the impact of viral dsRNA on the host gene expression has barely been investigated. Here, we determined the transcriptomic profiles of the host Saccharomyces cerevisiae upon the loss of the M-2 dsRNA alone and the M-2 along with the L-A-lus dsRNAs. We provide a comprehensive study based on the high-throughput RNA-Seq data, Gene Ontology and the analysis of the interaction networks. We identified 486 genes differentially expressed after curing yeast cells of the M-2 dsRNA and 715 genes affected by the elimination of both M-2 and L-A-lus dsRNAs. We report that most of the transcriptional responses induced by viral dsRNAs are moderate. Differently expressed genes are related to ribosome biogenesis, mitochondrial functions, stress response, biosynthesis of lipids and amino acids. Our study also provided insight into the virus–host and virus–virus interplays.

Highlights

  • Mycoviruses are common in fungi and typically possess dsRNA genome [1]

  • We provide an overview of yeast (S. cerevisiae) gene expression changes in M437 strain cured of the M-2 exclusively or from both M-2 and L-A-lus dsRNA viruses analyzed by

  • Transcriptional changes induced by the absence of viral dsRNA(s) in M437 [L+M−] and M437 [L−M−] cells were compared to the wild type S. cerevisiae

Read more

Summary

Introduction

Mycoviruses are common in fungi and typically possess dsRNA genome [1]. Fungal viruses lack the extracellular phase; they are inherited vertically either after cell division or through mating with a donor cell [2,3]. It has been demonstrated that genes of dsRNA viruses (i.e., Totiviridae and Partitiviridae) have widespread homologs in the nuclear genomes of eukaryotic organisms, such as plants, arthropods, fungi, nematodes, and protozoa, suggesting that viral genes might have been transferred horizontally from viral to eukaryotic genomes [3,4]. Totiviridae viruses in yeast are generally associated with symptomless and persistent infections [1], affecting host fitness in various ways by changing the virulence of fungal plant pathogens [5,6] and/or inducing toxin production [7,8,9]. Budding yeast is one of the best-described unicellular eukaryotic model organisms.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.