Abstract

Successful overwintering is a prerequisite for high fitness in temperate perennials and winter annuals and is highly dependent on increased freezing tolerance and timely balancing of deacclimation with growth resumption in spring. To assess fitness costs associated with overwintering and elucidate metabolic mechanisms underlying winter survival and the switch from acclimated freezing tolerance to growth resumption, we performed a comparative field study using 14 Eutrema salsugineum accessions, E. halophilum, E. botschantzevii and 11 Arabidopsis thaliana accessions differing in freezing tolerance. Winter survival and reproductive fitness parameters were recorded and correlated with phenological stage and metabolite status during growth resumption in spring. The results revealed considerable intraspecific variation in winter survival, but survival rates of the extremophyte Eutrema were not inherently better. In both Eutrema and A. thaliana, improved winter survival was associated with reduced reproductive fitness. Metabolic analysis by GC-MS revealed intrinsic differences in the primary metabolism of the two genera during deacclimation. Eutrema contained higher levels of several amino and chlorogenic acids, while Arabidopsis had higher levels of several sugars and sugar conjugates. In both genera, increased levels of several soluble sugars were associated with increased winter survival, whereas myo-inositol has different roles in overwintering of Eutrema and A. thaliana. In addition, differences in amino acid metabolism and polyhydroxy acids levels after winter survival were found. The results provide strong evidence for a trade-off between increased winter survival and reproductive fitness in both Eutrema and Arabidopsis and document inherent differences in their metabolic strategies to survive winter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call