Abstract

The selection of sites for pseudouridylation in eukaryotic cytoplasmic rRNA occurs by the base pairing of the rRNA with specific guide sequences within the RNA components of box H/ACA small nucleolar ribonucleoproteins (snoRNPs). Forty-four of the 46 pseudouridines (Psis) in the cytoplasmic rRNA of Saccharomyces cerevisiae have been assigned to guide snoRNAs. Here, we examine the mechanism of Psi formation in 5S and 5.8S rRNA in which the unassigned Psis occur. We show that while the formation of the Psi in 5.8S rRNA is associated with snoRNP activity, the pseudouridylation of 5S rRNA is not. The position of the Psi in 5.8S rRNA is guided by snoRNA snR43 by using conserved sequence elements that also function to guide pseudouridylation elsewhere in the large-subunit rRNA; an internal stem-loop that is not part of typical yeast snoRNAs also is conserved in snR43. The multisubstrate synthase Pus7 catalyzes the formation of the Psi in 5S rRNA at a site that conforms to the 7-nucleotide consensus sequence present in other substrates of Pus7. The different mechanisms involved in 5S and 5.8S rRNA pseudouridylation, as well as the multiple specificities of the individual trans factors concerned, suggest possible roles in linking ribosome production to other processes, such as splicing and tRNA synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.