Abstract

SummaryMicrobes play an integral role in forest soil phosphorus (P) cycling. However, the variation of microbial P-cycling functional genes and their controlling factors in forest soils is unclearly. We used metagenomics to investigate changes in the abundance of genes involved in P-starvation response regulation, P-uptake and transport, and P-solubilization and mineralization along the five elevational gradients. Our results showed the abundance of three P cycling gene groups increasing along the elevational gradient. Acidobacteria and Proteobacteria were the dominant microbial phyla determining the turnover of soil P-solubilization and immobilization. Along the elevational gradient, soil substrates are the major factor explaining variation in P-starvation response regulation genes. Soil environment is the main driver of P-uptake and transport and P-solubilization and mineralization genes. This study provided insights into the regulation of P-cycling from a microbial functional profile perspective, highlighting the importance of substrate and environmental factors for P-cycling genes in forest soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.