Abstract

A combination study of material modifications for the catastrophic laser-induced damage by 12 ns, 1064 nm laser pulse irradiation was investigated in air and vacuum environments. The samples were observed by optical microscope, scanning electron microscopy, laser micro-Raman spectroscopy, photoluminescence spectrum; moreover 2D numerical calculations were performed. According to our results, vacuum pumping induced higher laser field intensities, accompanying with more absorption of laser energy in the laser-induced damage process. All of these resulted in the material melting and subsequent re-solidification in the laser-damaged core in vacuum. While, in the air conditions, plasma expanding due to material heating and associated thermal expansion induced a large stress field, which caused the material deformation and formation of delamination and crack in the laser-damage region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call