Abstract

Tumor evasion of T-cell immunity remains a significant obstacle to adoptive T-cell therapy. It is unknown whether the mode of immune evasion is dictated by the cancer cells or by the tumor antigens. Taking advantage of the fact that multiple lineages of tumor cells share the tumor antigen P1A, we adoptively transferred transgenic T cells specific for P1A (P1CTL) into mice with established P1A-expressing tumors, including mastocytoma P815, plasmocytoma J558, and fibrosarcoma Meth A. Although P1CTL conferred partial protection, tumors recurred in almost all mice. Analysis of the status of the tumor antigen revealed that all J558 tumors underwent antigenic drift whereas all P815 tumors experienced antigenic loss. Interestingly, although Meth A cells are capable of both antigenic loss and antigenic drift, the majority of recurrent Meth A tumors retained P1A antigen. The ability of Meth A to induce apoptosis of P1CTL in vivo alleviated the need for antigenic drift and antigenic loss. Our data showed that, in spite of their shared tumor antigen, different lineages of cancer cells use different mechanisms to evade T-cell therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.