Abstract

Atypical megakaryocytes provide the histomorphological hallmark of all Philadelphia-chromosome negative chronic myeloproliferative disorder (Ph(-) CMPD) subtypes and have not been studied so far for the JAK2(V617F) mutation. The mutant gene dosage was determined in isolated megakaryocytes from 68 cases of JAK2(+)/Ph(-) CMPD by a pyrosequencing assay. Megakaryocytes from essential thrombocythemia (ET) showed significantly lower levels of mutated JAK2 alleles compared to patients with chronic idiopathic myelofibrosis (cIMF) with manifest fibrosis and polycythemia vera (PV) but not to prefibrotic cIMF. Solely, ET JAK2V617F in megakaryocytes is associated with a PV-like phenotype, and at least in one patient, the JAK2 mutation was exclusively acquired within the megakaryocytic lineage. The overt differences between prefibrotic and fibrotic cIMF suggested a causative role of the gene dosage of mutant JAK2 in fibrotic progression. Megakaryocyte analysis of a follow-up of eight individual cases with sequential biopsies, however, showed that progression to homozygosity of V617F mutated JAK2 and onset of manifest fibrosis appeared to be independent events. We conclude that megakaryocytes might be the predominant or even the exclusive lineage that acquires the JAK2(V617F) mutation in ET and that the JAK2(V617F) evolution to higher gene dosages represents a dynamic and complex process substantially involving megakaryocytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call