Abstract
The authors hypothesized that sevoflurane had different inhibitory effects on hyperreactive airway smooth muscle contractility in different types of hyperreactive airway models. The effects of sevoflurane on hyperreactive airways in ovalbumin-sensitized and chronic cigarette-smoking guinea pig models were investigated by measuring (1) total lung resistance, (2) smooth muscle tension and intracellular concentration of free Ca, (3) voltage-dependent Ca channel activity, and (4) cyclic adenosine monophosphate levels. Ovalbumin and muscarinic airway hyperreactivity was seen in ovalbumin-sensitized animals. Enlarged alveolar ducts/alveoli and lesser muscarinic hyperreactivity were observed in chronic cigarette-smoke animals. Although sevoflurane inhibited the acetylcholine-induced increase in total lung resistance in the control and ovalbumin-sensitized models, the anesthetic had a smaller effect in the chronic cigarette-smoking model. Similarly, in the chronic cigarette-smoking model, sevoflurane had a smaller inhibitory effect on carbachol-induced muscle contraction and increase in intracellular concentration of free Ca. Sevoflurane also had a smaller inhibitory effect on voltage-dependent Ca channel activity in the chronic cigarette-smoking group than in the other two groups. The sevoflurane-induced increase in cyclic adenosine monophosphate that was seen in the control and ovalbumin-sensitized groups was significantly suppressed in the chronic cigarette-smoking group. Although sevoflurane potently inhibited airway contractility in control and ovalbumin-sensitized models, the anesthetic had a smaller effect in a chronic cigarette-smoking model. The different inhibitory effects of sevoflurane on airway contractility depend, at least in part, on different effects on voltage-dependent Ca channel activity and cyclic adenosine monophosphate level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.