Abstract

In vitro and in vivo experiments are widely used for studying the metabolism of new psychoactive substances (NPS). The availability of such data is required for toxicological risk assessments and development of urine screening approaches. This study investigated the in vitro metabolism of the 5 pyrrolidinophenone-derived NPS alpha-pyrrolidinobutyrophenone (alpha-PBP), alpha-pyrrolidinopentiothiophenone (alpha-PVT), alpha-pyrrolidinohexanophenone (alpha-PHP), alpha-pyrrolidinoenanthophenone (alpha-PEP, PV8), and alpha-pyrrolidinooctanophenone (alpha-POP, PV9). First, they were incubated with pooled human liver microsomes (pHLM) or pooled human liver S9 fraction (pS9) for identification of the main phase I and II metabolites. All substances formed hydroxy metabolites and lactams. Longer alkyl chains resulted in keto group and carboxylic acid formation. Comparing these results with published data obtained using pHLM, primary human hepatocytes (PHH), and authentic human urine samples, PHH provided the most extensive metabolism. Second, enzyme kinetic studies showed that the initial metabolic steps were formed by cytochrome P450 isoforms (CYP) CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 resulting in pyrrolidine, thiophene or alkyl hydroxy metabolites depending on the length of the alkyl chain. The kinetic parameters indicated an increasing affinity of the CYP enzymes with increase of the length of the alkyl chain. These parameters were then used to calculate the contribution of a single CYP enzyme to the in vivo hepatic clearance. CYP2C19 and CYP2D6 were mainly involved in the case of alpha-PBP and CYP1A2, CYP2C9 and CYP2C19 in the case of alpha-PVT, alpha-PHP, alpha-PEP, and alpha-POP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call