Abstract

Diffuse reflection with incomplete accommodation is the favored gas–surface interaction model for calculating the drag coefficient of satellites in low Earth orbit, where drag is the largest source of uncertainty in the orbital trajectory of satellites. Closed-form solutions have incorporated the variation of the energy accommodation coefficient through equating the total energy of the incident and reflected flows; however, this leads to an incorrect reflected velocity distribution for incomplete accommodation. The problem is highlighted by investigating the velocity distribution functions for a gas reflected from a flat plate at zero accommodation. A physically accurate implementation for diffuse reflection with incomplete accommodation based on the Cercignani–Lampis–Lord gas–surface interaction model is compared with the closed-form solutions that equate the incident and reflected energy of the flow. The Cercignani–Lampis–Lord gas–surface interaction model shows the conservation of energy on a molecule-by-molecule basis for zero accommodation, as expected, whereas the closed-form method only conserves energy on average. The macroscopic effect of the different velocity distributions manifests in differences of in the drag coefficient of a flat plate, sphere, and the GRACE satellite at zero accommodation and differences larger than 1% for energy accommodation coefficients less than 0.90.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.