Abstract

Identifying the genes responsible for adaptation has been an elusive goal in evolutionary biology. Rock pocket mice (Chaetodipus intermedius) provide a useful system for studying the genetics of adaptation: most C. intermedius are light-coloured and live on light-coloured rocks, but in several different geographical regions, C. intermedius are melanic and live on dark-coloured basalt lava, presumably as an adaptation for crypsis. Previous work demonstrated that mutations at the melanocortin-1 receptor gene (Mc1r) are responsible for the dark/light difference in mice from one population in Arizona. Here, we investigate whether melanism has evolved independently in populations of dark C. intermedius from New Mexico, and whether the same or different genes underlie the dark phenotype in mice from these populations compared with the dark mice from Arizona. Seventy-six mice were collected from pairs of dark and light localities representing four different lava flows and adjacent light-coloured rocks; lava flows were separated by 70-750 km. Spectrophotometric analysis of mouse pelage and of rock samples revealed a strong positive association between coat colour and substrate colour. No significant differences were observed in the colour of rocks among the four lava flows, suggesting that mice in these separate populations have experienced similar selection for crypsis. Despite this similarity in environment, melanic mice from the three New Mexico populations were slightly, but significantly, darker than melanic mice from Arizona. The entire Mc1r gene was sequenced in all mice. The previously identified mutations responsible for the light/dark difference in mice from Arizona were absent in all melanic mice from three different populations in New Mexico. Five new Mc1r polymorphisms were observed among mice from New Mexico, but none showed any association with coat colour. These results indicate that adaptive melanism has arisen at least twice in C. intermedius and that these similar phenotypic changes have a different genetic basis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.