Abstract

Modulation of GABA-mediated neurotransmissions by Ro 15-4513 in cerebellar slices was assessed following stimulation of the parallel fibre input, which, in this preparation, preferentially activates the inhibitory interneurones innervating Purkinje cells. Peristimulus-time histogram analysis of inhibitory responses of spontaneously-active Purkinje cells showed only a decrease in the duration of inhibition induced by Ro 19-4603. This is consistent with inverse agonism on the BZ 1 receptors associated with postsynaptic GABA a receptors on Purkinje cells. 1 μM Ro 15-4513 induced a similar response but 100 nM Ro 15-4513 induced a biphasic response, with an increase in duration of inhibition preceding the decrease during continued perfusion of the compound. At lower concentrations of Ro 15-4513 the increase in inhibition predominated, the minimal effective concentration being 10 pM. 1 μM flumazenil blocked both components of this response to 100 nM Ro 15-4513, but at 100 nM flumazenil only blocked the decrease in inhibition. The ability of Ro 15-4513 but not Ro 19-4603 to enhance inhibition and its relative insensitivity to 100 nM flumazenil, parallel the affinities of these compounds for diazepam-insensitive (DI) binding sites in the cerebellum. These data suggest that the enhancement of inhibition induced by Ro 15-4513 results from its inverse agonist activity on DI receptors causing disinhibition of both granule cells and their parallel fibres and increased sensitivity to the electrical stimuli inducing activation of the inhibitory interneurones innervating Purkinje cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.