Abstract

The influence of residual malalignment on biomechanical analysis after total knee arthroplasty (TKA) is currently uncertain. The hypothesis is that postoperative alignment would influence the in vivo kinematics after TKA, under weight-bearing conditions but not under non-weight-bearing condition. The purpose of the present study was to compare weight-bearing and non-weight-bearing conditions and to evaluate the effect of the postoperative alignment on the in vivo kinematics after posterior cruciate ligament-retaining TKA during midflexion using 2-dimensional/3-dimensional registration. Thirty knees of 30 patients with pre-operative varus deformity were divided into 2 groups according to their postoperative alignment: the normal alignment group (N = 21) and the varus alignment group (N = 9). Under weight-bearing conditions, the varus alignment group showed a significant posterior displacement of the medial femoral condyle (flexion: 80°, 90° P < 0.05) and a significant anterior displacement of the lateral femoral condyle (flexion: 10° P < 0.01, 20° P < 0.05, and extension: 10°, 20° P < 0.01, 30°, 40° P < 0.05) as compared with the normal alignment group. In contrast, no significant difference in the medial and lateral femoral condyle positions under non-weight-bearing conditions was observed between the normal and varus alignment groups. The postoperative alignment influenced knee kinematics under weight-bearing conditions. The weight load influenced knee kinematics through posterior tibial slope and induced greater lateral femoral condyle mobility, which might explain the better clinical and functional outcome. These findings contribute to gaining a proper understanding of the in vivo kinematics of the postoperative varus alignment and might be useful for orthopaedic surgeons in the achievement of patient satisfaction. III.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.