Abstract

In the present study, we examined how real-world objects are represented in long-term memory. Two contrasting views exist with regard to this question: one argues that real-world objects are represented as a set of independent features, and the other argues that they form bound integrate representations. In 5 experiments, we tested the different predictions of each view, namely whether the different features of real-world items are remembered and forgotten independently from each other, in a feature-based manner, or conversely are stored and lost in an object-based manner, with all features depending upon each other. Across various stimuli, learning tasks (incidental or explicit), experimental setups (within- or between-subjects design), feature-dimensions, and encoding times, we consistently found that information is forgotten in an object-based manner. When an object ceases to be fully remembered, all of its features are lost, instead of only some of the object's features being lost whereas other features are still remembered. Furthermore, we found support for a strong form of dependency among the different features, namely a hierarchical structure. We conclude that visual long-term memory is object-based, challenging previous findings. (PsycInfo Database Record (c) 2020 APA, all rights reserved).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.