Abstract

In this paper, the numerical simulation of 921A steel target under the impact of truncated-ogive projectile is studied. The numerical results agrees well with the experimental results. Under three different conditions, the residual velocity is in good agreement with the experimental results, and the error is less than 5%. With the change of the impact point position, the failure modes of the stiffened plate target plate is described in detail. First, the stiffener tears and the failure by symmetrical petalling occurs in target plate on the both left and right side. With the change of the impact point position, the tearing degree of stiffener decreases gradually, and the stiffener deforms plastically only. The petals on target plate are no longer symmetrical, and the dynamic response of the left target plate transforms from petalling failure to small break, and only plastic deformation remains at last. The right target plate always produced petalling failure mode, but the number and form of petals always change. The results show that material point method can be applied well, and it can provide some reference data for the future research of ship penetration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.