Abstract

Tumour cells develop by accumulating changes in the genome that result in changes of main cellular processes. Aberrations of basic processes such as replication and chromatin reassembly are particularly important for genomic (in)stability. The aim of this study was to analyse the expression of genes whose products are crucial for the regulation of replication and chromatin reassembly during lymphomagenesis (DNMT1, PCNA, MCM2, CDT1, EZH2, GMNN, EP300). Non-tumour B cells were used as a control, and follicular lymphoma (FL) and the two most common groups of diffuse large B cell lymphoma (DLBCL) samples were used as a model for tumour progression. The results showed that there are significant changes in the expression of the analysed genes in lymphomagenesis, but also that these changes do not display linearity when assessed in relation to the degree of tumour aggression. Additionally, an integrated bioinformatics analysis of the difference in the expression of selected genes between tumour and non-tumour samples, and between tumour samples (FL vs. DLBCL) in five GEO datasets, did not show a consistent pattern of difference among the datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.