Abstract

To investigate the expression of aquaporin 7 (AQP7) and aquaporin 9 (AQP9) in the granulosa cells of patients with polycystic ovary syndrome (PCOS) and healthy women and detect their localization in oocytes at the germinal vesicle (GV), metaphase I (MI), MII, embryo, and blastocyst stages and the invitro response to insulin stimulation. Randomized, assessor-blinded study. Reproductive medical center. A total of 40 women (aged 20-38 years) comprising 29 cases of primary infertility and 11 cases of secondary infertility, of whom 17 had an initial diagnosis of PCOS and three received a PCOS diagnosis after an infertility examination. Controlling different concentrations of insulin and different treatment times in cultures of normal human granulosa cells invitro. Expression of AQP7 and AQP9 genes and proteins in granulosa cells detected by real-time quantitative polymerase chain reaction, and localization in oocytes at the GV, MI, MII, embryo, and blastocyst stages by Western blot, immunohistochemical, and immunofluorescence assays, and concentrations of insulin in follicular fluid by enzyme-linked immunosorbent assay. The expression levels of the AQP7 mRNA and protein in the granulosa cells of patients with PCOS were higher than found in healthy controls. We found AQP7 protein expressed in human oocytes at GV, MI, MII, embryo, and blastocyst stages; it was mainly located in the nucleoplasm. In the PCOS group, the expression level of AQP9 mRNA and protein in granulosa cells was lower, and AQP9 protein was expressed in oocytes at the GV, MI, MII, embryo, and blastocyst stages; it was localized on the nuclear membrane. Compared with healthy women, the insulin expression in patients with PCOS was higher. In cultures of normal human granulosa cells invitro, the expression of AQP7 and AQP9 mRNA and protein decreased with the increase in insulin concentration; expression statistically significantly decreased when the insulin concentration was 100 nmol/L, and after 6 to 24 hours of exposure the lowest expression levels were found at 12 hours. The different localization and expression of AQP7 and AQP9 between the two groups suggests that they might be involved in oocyte maturation and embryonic development through different regulatory pathways. The expression levels of AQP7 and AQP9 were negatively correlated with insulin regulation, suggesting that insulin might affect the maturation of PCOS follicles by changing AQP7 and AQP9 expression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call