Abstract
The influence of the dynamical flexibility of enzymes on reaction mechanisms is a cornerstone in biological sciences. In this study, we aim to 1) study the convergence of the activation free energy by using the first step of the reaction catalysed by HIV-1 protease as a case study, and 2) provide further evidence for a mechanistic divergence in this enzyme, as two different reaction pathways were seen to contribute to this step. We used quantum mechanics/molecular mechanics molecular dynamics simulations, on four different initial conformations that led to different barriers in a previous study. Despite the sampling, the four activation free energies still spanned a range of 5.0 kcal ⋅ mol-1 . Furthermore, the new simulations did confirm the occurrence of an unusual mechanistic divergence, with two different mechanistic pathways displaying equivalent barriers. An active-site water molecule is proposed to influence the mechanistic pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.