Abstract

AbstractDuring the selective laser melting (SLM) process of Ti6Al4V, a special structure can be formed with columnar prior β grains along the building direction and fully martensitic α′ within the β grain. To investigate the influence of such special structure on the fatigue crack growth (FCG) rate, Ti6Al4V specimens fabricated by SLM were heat‐treated at two different temperatures in this study. The columnar grains were retained, and the martensite was decomposed when heat‐treated below the β transus. It is found that all the SLM features were removed when heat‐treated above the β transus. FCG rate tests were subsequently performed at room temperature, and it was found that the prior β grains affected the macroscopic fracture morphology, but there was no discernible influence on the FCG rate. The morphology of the α phase affected the crack growth path and the FCG rate. Changes in the strength‐toughness relationship induced by heat treatment can help understand the decrease in the FCG rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call