Abstract
Effects of the antiarrhythmic and antimyotonic drug mexiletine were studied on two sodium channel mutants causing paramyotonia congenita (R1448H) and an overlap paramyotonic and hyperkalemic paralytic syndrome (M1360V). Channels were expressed in human embryonic kidney cells and studied electrophysiologically, using the whole-cell patch-clamp technique. Compared to the wild-type, channel, both mutants showed alterations of inactivation, i.e. slower inactivation, left shift of steady-state inactivation and faster recovery from inactivation. Mexiletine caused a significantly larger use-dependent block of the R1448H mutant when compared to M1360V and wild-type channels. This can be explained by a prolonged recovery from mexiletine block as observed for R1448H channels, since the affinity of mexiletine for the inactivated state was similar for all three clones. The use-dependent block of sodium channels by mexiletine reduces repetitive series of action potentials and therefore improves muscle stiffness in myotonic patients. The enhanced use-dependent block as seen with R1448H may explain the extraordinary therapeutic efficacy of mexiletine in most patients with paramyotonia congenita.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.