Abstract

ObjectiveEssential tremor (ET) and Parkinsonian tremor (PT) are often clinically misdiagnosed due to the overlapping characteristics of their hand tremor. We aim to examine if ET and PT influence the multiscale dynamics of hand tremor, as quantified using complexity, differently, and if such complexity metric is of promise to help identify ET from PT. MethodsForty-eight participants with PT and 48 with ET performed two 30-second tests within each of the following conditions: sitting while resting arms or outstretching arms horizontally. The hand tremor was captured by accelerometers secured to the dorsum of each hand. The complexity was quantified using multiscale entropy. ResultsCompared to PT group, ET group had lower complexity of both hands across conditions (F > 34.2, p < 0.001). Lower complexity was associated with longer disease duration (r2 > 0.15, p < 0.009) in both PT and ET, and within PT, greater Unified Parkinson's Disease Rating Scale-III UPDRS-III scores (r2 > 0.18, p < 0.009). Receiver-operating-characteristic curves revealed that the complexity metric can distinguish ET from PT (area-under-the-curve > 0.77, cut-off value = 48 (postural), 49 (resting)), which was confirmed in a separate dataset with ET and PT that were clearly diagnosed in prior work. ConclusionsThe PT and ET have different effects on hand tremor complexity, and this metric is promising to help the identification of ET and PT, which still needs to be confirmed in future studies. SignificanceThe characteristics of multiscale dynamics of the hand tremor, as quantified by complexity, provides novel insights into the different pathophysiology between ET and PT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call