Abstract

Natriuretic peptide receptor A (NPR-A) is the main physiological receptor for atrial natriuretic peptide (ANP). Maximal activation of NPR-A guanylyl cyclase (GC) requires ANP binding and ATP interaction with a putative cytoplasmic site. This study investigates the regulatory effect of ATP on GC-coupled NPR-A activity in Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR). Cyclic GMP production and competitive inhibition of [(125)I]ANP(1-28) binding were performed in solubilized glomerular and papillary renal membranes. Here, we report that incubation of renal glomerular and papillary membranes with ATP induced a concentration-dependent increase in basal and ANP(1-28)-stimulated GC activity that was significantly greater in SHR than in age-matched WKY. ATPgammaS was more effective than ATP and induced a greater stimulation of cGMP production in SHR than in WKY. In contrast, in solubilized membranes ATP exerted an inhibitory role on basal and ANP(1-28)-induced GC activity, suggesting that an accessory protein is required for ATP-induced GC activation. ATP increases NPR-A affinity for ANP(1-28) and decreased B(max) in crude and solubilized membranes. Kinetic analysis of GC-coupled NPR-A revealed that ATP reduced the Km and increased the V(max), an effect that was greater in SHR. Our observations indicate that ATP exerts a greater net effect on NPR-A in SHR than in WKY, which might explain the greater rate of cGMP production observed in SHR compared to WKY.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call