Abstract

Neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative disorders characterized by epilepsy, progressive motor and cognitive decline, blindness, and by the accumulation of autofluorescent lipopigment. Late-infantile onset forms (LINCL) include those linked to mutations in CLN8 gene, encoding a transmembrane protein at the endoplasmic reticulum (ER). In the motor neuron degeneration (mnd) mouse model of the CLN8-LINCL (CLN8 mnd ), we carried out an analysis of ER stress-related molecules in CNS structures that exhibit a variable rate of disease progression (early retinal degeneration and delayed brain and motoneuron dysfunction). At the presymptomatic state of 1-month-old CLN8 mnd mice, we found an upregulation of GRP78 and activation of the transcription factor-6 (ATF6) in all structures examined, an activation of a CHOP-dependent pathway in the cerebellum, hippocampus and retina, a caspase-12-dependent pathway in the retina and no activation of these two pathways in the cerebral cortex and spinal cord. An increased CHOP expression was detected in the cortex and spinal cord at the early symptomatic state (4 months). Caspase-3 cleavage occurred presymptomatically in the cerebellum, hippocampus and retina, and symptomatically in the cerebral cortex and spinal cord. We also monitored activation of NF-κB, which is engaged in the alarming phase of ER stress, together with increased levels of TRAF2, TNF-α and TNFR1, and no activation of ASK-1/JNK signalling pathway, all over mnd structures. The results suggest that early ER-stress responses distinctly combined and ER-stress pathways integrated with inflammatory responses may contribute to the progression of the CLN8 mnd disease in CNS structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.