Abstract

The role of protein dynamics in the reaction catalyzed by dihydrofolate reductase from the hyperthermophile Thermotoga maritima (TmDHFR) has been examined by enzyme isotope substitution (15N, 13C, 2H). In contrast to all other enzyme reactions investigated previously, including DHFR from Escherichia coli (EcDHFR), for which isotopic substitution led to decreased reactivity, the rate constant for the hydride transfer step is not affected by isotopic substitution of TmDHFR. TmDHFR therefore appears to lack the coupling of protein motions to the reaction coordinate that have been identified for EcDHFR catalysis. Clearly, dynamical coupling is not a universal phenomenon that affects the efficiency of enzyme catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.