Abstract

Purpose Neuroblastoma, a prevalent childhood tumor, poses significant challenges in therapeutic interventions, especially for high-risk cases. This study aims to fill a crucial gap in our understanding of neuroblastoma treatment by investigating the potential molecular impacts of short- and long-term pulsed magnetic field exposure on the neuronal apoptosis mechanism in an in vitro model of neuroblastoma treated with oleic acid (OA). Materials and methods Cells were cultured and divided into six following experimental groups: (I) Nontreated group (NT); (II) OA-treated group (OA); (III) Group treated with OA after being exposed to the pulsed magnetic field for 15-min (15 min PEMF + OA); (IV) Group treated with OA after being exposed to the pulsed magnetic field for 12 h (12 h PEMF + OA); (V) Group exposed to the pulsed magnetic field for 15 min (15 min PEMF); and (VI) Group exposed to the pulsed magnetic field for 12 h (12 h PEMF). Cell viability, rates of apoptosis, and mRNA levels of key apoptotic genes (TP53, Bcl2, Bax, and Caspase-3) were assessed. Results Significant reductions in cell viability were observed, particularly in the group treated with OA following long-term pulsed magnetic field exposure. Flow cytometry revealed elevated apoptosis rates, notably in the early stages of apoptosis. qRT-PCR analysis demonstrated increased expression of cleaved Caspase-3, Bax/Bcl2 ratio, and TP53 in cells treated with OA following long-term pulsed magnetic field exposure, signifying enhanced apoptotic pathways. Conclusions The findings indicate that long-term pulsed magnetic field exposure and OA treatment exhibit potential synergistic effects leading to the induction of apoptosis in SH-SY5Y cells. We have concluded that stimulations of pulsed magnetic field have the potential to serve as an adjuvant therapy for oleic acid-based treatment of neuroblastoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.